QUESTION BANK 2020

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR (AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road – 517583 **QUESTION BANK (DESCRIPTIVE)**

Subject with Code : Electrical and Electronic Measurements (16EE224)

Course: B.Tech & EEE

Regulation: R16

Year &Sem: III-B.Tech & II-Sem

<u>UNIT –I</u>

MEASURING INSTRUMENTS

1	a	Define the terms "Indicating instruments", "Recording instruments" and "Integrating instruments".	6M
	b	A 2mA meter with an internal resistance of 1000hm is to be converted to 0-150mA	6M
		ammeter. Calculate the value of the shunt resistance required.	
2	a	Explain the working of universal shunt used for multi range ammeters and derive	10M
		expressions for resistances of different sections of a universal shunt for 3 range ammeter	
	b	List the errors in PMMC instrument.	2M
3	a	Design an Aryton shunt to provide an ammeter with the current ranges 1 A, 5A and	10M
		10A. A basic meter resistance is 50 ohm and full scale deflection current is 1 mA.	
	b	What are the disadvantages of gravity control	2M
4		Explain the construction and working principle of PMMC instrument along with its	12M
		torque equation	
5	a	Derive an expression for the Deflecting torque in MI type instruments	6M
	b	List the advantages & disadvantages of MI type instruments	6M
6		Describe the construction and working of attraction type MI instrument?	12M
7		How do you extend the range of an Ammeter? Explain Aryton Shunt with diagram.	12M
8	a	A moving coil instrument has a resistance of 10 ohm and gives a full scale deflection	8M
		when carrying 50mA . Show how it can be adopted to measure voltage upto 750 V	
		and current 100 A.	
	b	What are the precautions to be taken while using a voltmeter	4M
9	a	Compare various controlling system in indicating instrument	5M
	b	The deflecting torque of an ammeter varies as the square of the current passing through	7M
		it. If a current of 5A produces a deflection of 90degree, what will be the deflection for a	
		current of 10A when the instrument is i) spring control ii) gravity control	

QUESTION BANK 2020

12M

		<u>UNIT-II</u>	
DC AND AC BRIDGES			
1	a b	Draw the circuit diagram of a Wheatstone bridge and derive the conditions for balance. The wheatstone bridge has R1=10Kohm, R2=2Kohm and R3=5Kohm. Calculate the value of unknown resistance, assuming the bridge to be in balanced condition.	6M 6M
2		Explain how insulation resistance of a cable can be measured with a help of Loss of charge method?	12M
3	a	Draw the circuit of a Kelvin's double bridge used for measurement of low resistance. Derive condition for balance	10M
	b	Explain the classification of resistances.	2 M
4	a	An inductance comparison bridge is used to measure the inductive impedance at a frequency of 1.5KHz. The bridge constants at bridge balance are, L3=8mH, R1=1Kohm, R2=25ohm, R3=50kohm	6M
	b	Derive the balance equation for AC bridges	6M
5		Explain how Wien's bridge can be used for experimental determination of frequency. Derive the expression for frequency in terms of bridge parameters.	12M

Explain the construction and working of attracted disc electrostatic voltmeter in detail.

6 Explain about De sauty's Bridge with a neat sketch. 6M a b List the advantages and disadvantages of Maxwell's Bridge. 6M 7 Explain the construction and working of Anderson bridge with suitable diagram 12M 8 a Derive the general balance equation of a DC Bridge. 6M b List some advantages and disadvantages of Anderson bridge. 6M 9 Explain voltmeter and ammeter method for measuring resistances value in detail 12M 10 a Draw and derive the circuit of Maxwell's inductance capacitance bridge to measure the 8M

value of inductance. b Define power factor and loss angle. 4M

ELECTRICAL AND ELECTRONIC MEASUREMENTS

10

<u>UNIT –III</u> <u>MEASUREMENT OF POWER AND ENERGY</u>

1		Give the constructional details of electro dynamometer type wattmeter with a neat sketch.	12M
2	a	Discuss the errors of single phase energy meter.	6M
	b	A 50A, 230 V meter on full load test makes 61 revolutions in 37 seconds. If the normal disc speed is 520 revolutions per Kwh , find the percentage error.	6M
3	a	A single phase kilo watt hour meter makes 500 revolutions per kilo watt hour. It is found	6M
		on testing as making 40 revolutions in 58.1 seconds at 5KW full load. Find the	
		percentage error	
	b	Explain driving system, moving system and braking system in a single phase induction	6M
4	a	Explain the measurement of LPF and UPF.	6M
	b	Explain about creeping and its compensation in single phase induction type energy	6M
		meter.	
5	a	Explain the friction compensation in single phase induction type energy meter.	6M
	b	Explain stray magnetic field errors in electro dynamometer type wattmeter.	6M
6	a	Explain the construction of Two element and Three element dynamometer wattmeter's	6M
	b	Derive the torque equation for electro dynamo meter type wattmeter	6M
7	a	Explain errors caused by vibration of moving system electro dynamometer type wattmeter	6M
	b	Explain the advantages and disadvantages of single phase Induction type Energy meter	6M
8		Explain with a neat sketch the construction and working of a single-phase dynamometer type wattmeter	12M
9		Explain the working of 2 element energy meter with a neat diagram.	12M
10		Write short notes on	12M
		 (i) Advantages of Two element wattmeter (ii) Creeping error (iii)Driving and braking torque (iv)LPF (v) Errors in Dynamometer type wattmeter. (vi)UPF 	

QUESTION BANK 2020

UNIT-IV

INSTRUMENT TRANSFORMER AND POTENTIOMETERS

1	a	Discuss C T and P T.	6M
	b	Why secondary of C.T should not be open?	6M
2		Explain the construction of (i) Current transformer (ii) Potential transformer.	12M
3	a	With neat figure explain the working of an ac potentiometer.	8M
	b	Discuss the significance of standardization.	4M
4	a	How do you standardize a potentiometer? Explain with a neat diagram.	6M
	b	Discuss slide wire DC potentiometer.	6M
5	a	Explain the construction and working principle of Crompton's DC potentiometer	8M
	b	Explain the term "Standardization" of Potentiometer.	4M
6	a	Explain the applications of DC potentiometers.	6M
	b	List the advantages of potentiometers	6M
7	a	How do you measure current and voltage using potentiometer.	4M
	b	Describe the construction and working of co-ordinate type Potentiometer & its standardization.	8M
8		Describe the construction and working of Polar type Potentiometer & its standardization.	12M
9	a	Describe the construction and working of a d.c potentiometer.	6M
	b	What is standardization? Explain	6M
10		Explain the construction and working of Current transformer	12M

UNIT-V

MAGNETIC MEASUREMENTS AND DIGITAL METERS

1	a	Derive the equation of motion for ballistic galvanometer.	6M
	b	Explain six point methods.	6M
2		Explain the construction and working principle of flux meter with a neat diagram	12M
3	a	Determine leakage factor with flux meter.	6M
	b	compare flux meter and ballistic galvanometer	6M
4		Describe the construction and working of a moving coil ballistic galvanometer.	12M
5		Draw a neat figure and explain the working of a C R O.	12M
6		Describe briefly how the following measurements can be made with the use of CRO	12M
		(i) Frequency (ii) Phase angle (iii) voltage	
7	a	Discuss A C testing. What are Iron losses ?. How do they vary with frequency?	8M
	b	Write explanatory notes on flux meter.	4M
8		Describe about basic principle and working of digital meters in detail	12M
9	a	With neat diagram, explain about cathode ray tube	8M
	b	List some application of CRO	4M
10	a	Write a short note on Horizontal and vertical amplifier	8M
	b	List some application of digital meters	4M